commit dad00e7dc4689b4d37d5c04073839a84d5c75fb9
Author: ffff:222.155.80.110 <ffff:222.155.80.110@hub.scroll.pub> Date: 2024-10-04 07:36:57 +0000 Subject: Updated script.js diff --git a/script.js b/script.js index e69de29..44626b3 100644 --- a/script.js +++ b/script.js @@ -0,0 +1,80 @@ +function showIntroduction() { + document.getElementById("content").innerHTML = ` + <h2>What is PCA?</h2> + <p>Principal Component Analysis (PCA) is a technique for reducing the dimensionality of data. It transforms the data into a set of linearly uncorrelated variables known as principal components.</p> + <p>This tutorial will walk you through the key steps of PCA and demonstrate how it is used in data science and machine learning.</p> + `; +} + +function showSteps() { + document.getElementById("content").innerHTML = ` + <h2>Steps of PCA</h2> + <ol> + <li>Standardize the data.</li> + <li>Calculate the covariance matrix.</li> + <li>Calculate the eigenvalues and eigenvectors of the covariance matrix.</li> + <li>Choose principal components and form a feature vector.</li> + <li>Transform the data.</li> + </ol> + `; +} + +function showVisualization() { + document.getElementById("content").innerHTML = ` + <h2>PCA Visualization</h2> + <p>Below is a simple example showing data points before and after PCA transformation.</p> + <canvas id="pcaCanvas" width="600" height="400"></canvas> + `; + drawPCAVisualization(); +} + +function drawPCAVisualization() { + const canvas = document.getElementById("pcaCanvas"); + const ctx = canvas.getContext("2d"); + + // Sample data points before PCA (simulated 2D data) + const dataPoints = [ + { x: 50, y: 150 }, { x: 80, y: 120 }, { x: 90, y: 200 }, + { x: 200, y: 100 }, { x: 250, y: 80 }, { x: 300, y: 50 } + ]; + + // Clear canvas + ctx.clearRect(0, 0, canvas.width, canvas.height); + + // Draw original data points + ctx.fillStyle = "#4CAF50"; + dataPoints.forEach(point => { + ctx.beginPath(); + ctx.arc(point.x, canvas.height - point.y, 5, 0, 2 * Math.PI); + ctx.fill(); + }); + + // Simulated transformed data points (after PCA) + const transformedPoints = [ + { x: 100, y: 200 }, { x: 130, y: 180 }, { x: 140, y: 250 }, + { x: 250, y: 170 }, { x: 300, y: 150 }, { x: 350, y: 120 } + ]; + + // Draw transformed data points + ctx.fillStyle = "#FF5722"; + transformedPoints.forEach(point => { + ctx.beginPath(); + ctx.arc(point.x, canvas.height - point.y, 5, 0, 2 * Math.PI); + ctx.fill(); + }); + + ctx.fillStyle = "#000"; + ctx.fillText("Original data points (green) vs PCA transformed (orange)", 10, 20); +} + +function showApplications() { + document.getElementById("content").innerHTML = ` + <h2>Applications of PCA</h2> + <p>PCA is widely used in fields like image processing, genetics, and finance. It helps simplify complex datasets by reducing the number of variables while retaining most of the information.</p> + <ul> + <li><strong>Image Compression</strong>: Reducing the size of images without significant loss in quality.</li> + <li><strong>Data Visualization</strong>: Reducing high-dimensional data to 2D or 3D for visualization.</li> + <li><strong>Feature Extraction</strong>: Identifying significant patterns in data.</li> + </ul> + `; +}
commit 3c35ebfc869ba5ad7c05f7eab2cc0543494d4523
Author: ffff:222.155.80.110 <ffff:222.155.80.110@hub.scroll.pub> Date: 2024-10-04 07:36:49 +0000 Subject: Updated script.js diff --git a/script.js b/script.js new file mode 100644 index 0000000..e69de29
commit 9daa11811c76f0ba7dad101263a54331ad2c9a19
Author: ffff:222.155.80.110 <ffff:222.155.80.110@hub.scroll.pub> Date: 2024-10-04 07:35:13 +0000 Subject: Updated main.scroll diff --git a/main.scroll b/main.scroll index 8b13789..6b6c1e4 100644 --- a/main.scroll +++ b/main.scroll @@ -1 +1,24 @@ - +<!DOCTYPE html> +<html lang="en"> +<head> + <meta charset="UTF-8"> + <meta name="viewport" content="width=device-width, initial-scale=1.0"> + <title>Interactive PCA Tutorial</title> + <link rel="stylesheet" href="styles.css"> + <script src="script.js" defer></script> +</head> +<body> + <header> + <h1>Principal Component Analysis (PCA) Interactive Tutorial</h1> + </header> + <nav> + <button onclick="showIntroduction()">Introduction</button> + <button onclick="showSteps()">Steps of PCA</button> + <button onclick="showVisualization()">PCA Visualization</button> + <button onclick="showApplications()">Applications</button> + </nav> + <main id="content"> + <!-- Content will be dynamically inserted here --> + </main> +</body> +</html>
commit 7ea2828a5034c83dce60a4f9cad4af7e5bdc6b8c
Author: ffff:222.155.80.110 <ffff:222.155.80.110@hub.scroll.pub> Date: 2024-10-04 07:34:58 +0000 Subject: Updated index.scroll diff --git a/index.scroll b/index.scroll index 48cb16d..5c973a1 100644 --- a/index.scroll +++ b/index.scroll @@ -1,5 +1,5 @@ -buildHtml - -theme roboto - -main.scroll +buildHtml + +theme roboto + +main.scroll
commit 80e9b1ea5c17af81af52571c92775d5825501386
Author: ffff:222.155.80.110 <ffff:222.155.80.110@hub.scroll.pub> Date: 2024-10-04 07:34:54 +0000 Subject: Updated index.scroll diff --git a/index.scroll b/index.scroll index 6b06f2f..48cb16d 100644 --- a/index.scroll +++ b/index.scroll @@ -2,4 +2,4 @@ buildHtml theme roboto -Hello World my name is +main.scroll
commit 7b5d90bd976d1823d2044dc7baa7e16a064c2242
Author: ffff:222.155.80.110 <ffff:222.155.80.110@hub.scroll.pub> Date: 2024-10-04 07:34:36 +0000 Subject: Updated main.scroll diff --git a/main.scroll b/main.scroll new file mode 100644 index 0000000..8b13789 --- /dev/null +++ b/main.scroll @@ -0,0 +1 @@ +
commit eb78dd48ead968804b2e54760f0e3139120d1074
Author: root <root@hub.scroll.pub> Date: 2024-10-04 06:33:37 +0000 Subject: Initial commit from blank template diff --git a/index.scroll b/index.scroll new file mode 100644 index 0000000..6b06f2f --- /dev/null +++ b/index.scroll @@ -0,0 +1,5 @@ +buildHtml + +theme roboto + +Hello World my name is